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We investigate theoretically the kinetics of the folding transition of a single semiflexible polymer. In the
folding transition, the growth rate decreases with an increase in the number of monomers in the collapsed
domain, suggesting that the main contribution to dissipation is from the motion of the domain. In the unfolding
transition, the dynamic scaling exponents 1/8 and 1/4 were determined for the disentanglement and relaxation
steps, respectively. We performed Langevin dynamics simulations to test our theory. It is found that our theory
is in good agreement with simulations. We also propose the kinetics of the transitions in the presence of a
hydrodynamic interaction.
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I. INTRODUCTION

Compared to our understanding of the equilibrium states
of polymers, our understanding of polymers far from equi-
librium is quite primitive. Recently, the kinetic properties of
single polymer molecules have become experimentally trac-
table, and they have been investigated mainly because of
their biological importance. Although the kinetics of order-
ing are well understood and several investigations have been
carried out on flexible polymers, the kinetics of semiflexible
polymers are not as well understood.

Most biopolymers, including DNA and many proteins,
have bending rigidity; therefore, they are classified as semi-
flexible polymers. It is expected that bending rigidity plays
an important role in the structural stability and function of
these biomacromolecules. Recent experiments and simula-
tions have clarified that a single semiflexible polymer exhib-
its a first-order phase transition between a swollen coil state
and a folded compact state as the solvent quality decreases
�1�. A single semiflexible polymer folds into various kinds of
ordered structure depending on its bending rigidity and tem-
perature, such as a toroid or a cylinder �2�.

The folding kinetics of a flexible polymer was first dis-
cussed by de Gennes using scaling theory �3,4�, and then
various methods were proposed, such as the uniform expan-
sion method �5,6� and the Gaussian self-consistent method
�7�, and the latter was extended to the folding kinetics of a
semiflexible polymer �8�. Numerical simulations such as
Brownian dynamics �9,10� and Monte Carlo �11,12� simula-
tions have been carried out. Most of the simulations ignored
the hydrodynamic interaction. Recently, the authors in
�13,14� developed a new algorithm, which enables us to elu-
cidate the features of the hydrodynamic interaction in the
kinetics of the collapse transition of a flexible polymer.
These investigations have revealed that a flexible polymer
forms a pearl-necklace conformation at an early stage of the
transition and reaches the globule state via the growth of
each pearl �15,16�. Although the globule is compact, it
does not reach the most stable state. Therefore, at a
later stage of the transition, segments realign so as to
form the equilibrium conformation �17�. Experiments with
poly�N-isopropylacrylamide� were found to be consistent
with the theoretical and numerical results �18�.

In this paper, we discuss the transition kinetics in single
semiflexible polymers. Our picture is that the folding transi-
tion consists of nucleation and growth steps, and the unfold-
ing transition has three different regimes: swelling, disen-
tanglement, and relaxation �19�. Nucleation and growth
processes have been observed in the simulations of single
semiflexible polymers and experiments on single DNA mol-
ecules. On the other hand, to our knowledge, the mechanism
of the unfolding transition has been much less well eluci-
dated, since it is difficult to observe the microscopic dynam-
ics of chain segments. In �20,21�, the authors theoretically
and computationally proposed the existence of a topological
constraint in single flexible polymers in the unfolding tran-
sition. Our purpose is to study the time evolution of a mac-
roscopic variable such as the long-axis length, which is ex-
perimentally observable. We derive equation of motions for
the variables and determine the dynamic scaling exponents
in the unfolding transition on the basis of a scaling analysis.
It is of importance to note that the validity of our picture can
be verified by comparison with exponents in experiments
and simulations.

The reminder of this paper is organized as follows. In Sec.
II, we present an overview of our method. The results of the
theoretical analysis of the folding and unfolding transitions
are shown in Secs. III and IV, respectively. Then, in Sec. V,
we demonstrate the results of simulations and compare them
with our theoretical results. We discuss the hydrodynamic
interaction in Sec. VI. Section VII is devoted to the justifi-
cation of our theory with investigation of kinetic pathways.
In Sec. VIII, we summarize our results.

II. THEORY

In general, it is not trivial to write down the equations of
motion of coarse-grained variables such as the gyration ra-
dius. In �3�, de Gennes proposed a powerful method to esti-
mate the time evolution of coarse-grained variables. The es-
sence of the method is based on the balance between the free
energy change of a polymer Fchain and the dissipative heat Q
due to the change. The dissipative heat is exhausted by the
motion of solvent molecules; therefore, we have the relation
�22�
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dFchain

dt
= −

dQ

dt
. �1�

By calculating dF /dt and dQ /dt separately, we obtain the
equation of motion for macroscopic variables �3,4,16�.

The dissipation arises from the velocity gradient of the
fluid. Nevertheless, if the hydrodynamic interaction is ne-
glected �the so-called free-drain limit�, the dissipation is
greatly simplified by using the Stokes force acting on solute
molecules. The Stokes force acting on a sphere of radius b
and velocity v is f ��vb. This leads to the dissipation

dQS

dt
� �v2b . �2�

On the other hand, with hydrodynamic interactions, it is nec-
essary to consider the velocity field. Instead of solving the
full set of hydrodynamic equations, we may consider two
approximate situations. When monomers in a domain move
cooperatively in one direction with the hydrodynamic inter-
action, the frictional dissipation can still be described by re-
placing the size of a particle with the screening length �H. We
will further discuss this effect in Sec. VI. The second situa-
tion is a spherical expanding or contracting domain with a
size RH, which has a velocity gradient inside. The force act-
ing on a unit volume is proportional to the gradient of the

stress tensor, �� ·�J, and this leads to the following dissipation
from a domain with volume �:

dQH

dt
= �� d���v�2 � �v2RH. �3�

We consider a polymer chain that has a contour length of L.
The total free energy has three contributions:

Fchain = Fela + Fbend + Fint. �4�

The first and second terms are the entropic elasticity and
bending elasticity, respectively. The third term arises from
the repulsive interaction between monomers �the excluded
volume interaction� and, under poor solvent conditions, at-
tractive interaction. The present theory does not successfully
describe both the swollen and the collapsed states with
unique approximate free energy. Thus, we consider two
asymptotic behaviors. In the swollen state, we may combine
the elastic and the bending free energies and regard the
renormalized monomer size as the persistence length lp in-
stead of the bare monomer size a. This implies that a poly-
mer consists of rods of length lp. Moreover, since the mono-
mer density is low, Fint is expanded with virial coefficients.
In the collapsed state, a mean field approximation is avail-
able �23�. The total free energy has a contribution that is
proportional to the volume of the collapsed polymer. With
the bending elasticity and surface penalty, the free energy is
described as

Fchain = Fsurface + Fbending + Fvolume, �5�

where the surface energy is proportional to the surface area
with surface tension �.

In order to calculate free-energy changes and dissipation,
we assume characteristic conformations in the folding and

unfolding transitions. In the folding transition, an attractive
interaction leads a polymer into a folded state while all the
other terms in the free energy prevent a polymer from mak-
ing the transition. This results in a competition between
swelling and folding, and thus we may expect nucleation and
growth steps in the folding transition. In contrast to this, no
terms in the free energy stabilize the collapsed state in the
unfolding transition after the attractive interaction is
switched off. Therefore, instability at the early stage leads to
the unfolding transition.

The above assumption is justified by recent fluorescence
measurements of DNA, where it was revealed that the fold-
ing transition consists of nucleation and growth steps, while
the kinetics of the unfolding transition proceeds more gradu-
ally �24�. Simulations also support the notion that the folding
transition of a single semiflexible polymer exhibits nucle-
ation and growth �25�. Thus, it is reasonable to assume that
the folding transition consists of nucleation and growth steps.
On the other hand, the details of the unfolding transition are
yet unclear. We assume three regimes for the unfolding tran-
sition: swelling, disentanglement, and relaxation steps. Our
purpose is to obtain the size of the polymer as a function of
time. In the folding transition, we also calculate the nucle-
ation time, which is of importance to characterize the nucle-
ation step. These macroscopic values are relevant in com-
parison between methods such as theory, simulations, and
experiments. First, we will proceed with our calculation un-
der this assumption; then, in Sec. VII, we will discuss the
validity of the assumption.

In this paper, we concentrate on the toroidal shape for lp
�a and the globular shape for lp�a, where a is the mono-
mer size, although in a folding transition of a semiflexible
polymer, cylindrical conformations were also observed �2�.
We make remarks concerning these conformations at the end
of this paper.

III. FOLDING TRANSITION

The folding transition occurs as a result of the competi-
tion between the volume free energy and the surface and
bending free energies. The volume free energy makes a poly-
mer collapse, while the surface and bending free energies
lead the polymer to a coiled state. Due to the competition,
the folding transition is characterized by the nucleation and
growth steps. We consider the conformation shown in Fig. 1.
When dl1 /dt�0, the nucleus grows and the system reaches a
collapsed state. On the other hand, when dl1 /dt�0 the
nucleus becomes unstable and the system returns to a coiled
state. The free-energy change and dissipation originate from
both the collapsed and coiled domains �Fig. 1�,

dF

dt
= 	dF

dt



collapse
+ 	dF

dt



coil
, �6�

dQ

dt
= 	dQ

dt



collapse
+ 	dQ

dt



coil
. �7�

We assume that the collapsed domain is close packed, i.e., its
volume is proportional to the length of the domain. The con-
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ditions are 4 /3	Rf
3= l1a2 for a flexible polymer and

2	2r2Rf= l1a2 for a semiflexible polymer, where Rf is the
size of the folded domain and l1 /a monomers are inside the
collapse �Fig. 1�. A monomer at the boundary between col-
lapsed and coiled domains experiences the force arising from
the chemical potential of the collapsed domain,

f = −
�Fcollapse

�l1
. �8�

After nucleation, the monomers in the coiled domain are
pulled into the collapsed domain by this force.

A. Nucleation for a flexible chain (lpÉa)

When a polymer is flexible, i.e., lp�a, it collapses into a
disordered globule. Since, in the collapsed state, the mean
field approximation is applicable, the total free energy is
written approximately with the contributions from the sur-
face, bending, and volume free energies as

Fcollapse = Fsurface + Fbend + Fvolume �9�

��Rf
2 + 


l1

Rf
2 − �l1, �10�

where � and � are the surface tension and interaction energy
density, respectively, and Rf ��l1a2�1/3. We use the relation
between the bending constant and the persistence length:

 /T= lp. The free-energy change is

dF

dt
� 	�a4/3

l1
1/3 +

Tlp

l1
2/3a4/3 − �
	dl1

dt

 . �11�

Because the dissipation is an irreversible process, the sign of
dl1 /dt is determined by the free-energy change. Therefore,
the critical size of a nucleus is calculated as

l1
� � 	�

�

3

a4 +
3�Tlp

�2 . �12�

The free energy at this size corresponds to the barrier be-
tween the coiled and collapsed states, and the characteristic
time for the nucleation process, �c, depends on it exponen-

tially. In addition, �c weakly depends on the dissipation rate
because it determines the velocity of the growth of a nucleus.
We obtain the nucleation time for a disordered collapse as

�c �
̃�

�
	 l1

�

a

4/3

exp	�3a4

�2T
+

3�lp

�

 , �13�

where ̃�= ̃�l1= l1
�� is the effective friction at the critical

nucleus. The prefactor arises from the second derivative of
the free energy at the critical size of the nucleus. The details
of the prefactor depend on the dissipation mechanism, which
is discussed below. Nevertheless, the nucleation time is es-
sentially dominated by the exponential factor.

B. Nucleation for a semiflexible chain (lpša)

The free energy of a collapsed domain depends on its
structure, and here we consider a toroidal conformation �Fig.
1�. The free energy is expressed as the summation of the
surface, bending, and volume energies,

Fcollapse
toroid � �rRf + 


l1

Rf
2 − �l1. �14�

The surface and bending energies are balanced; as a result,
with the condition of the closely packed conformation in the
folded part 2	2r2Rf= l1a2, the free-energy change is esti-
mated as

	dF

dt



collapse

toroid

� �	�4lpTa4

l1
2 
1/5

− ��	dl1

dt

 . �15�

We obtain the following nucleation time for ordered col-
lapse:

�c �
̃�l1

�7/5

��4lpTa4�1/5e�l1
�

, �16�

where l1
�=�2lp

1/2 /�5/2.

C. Growth

In the growth step, the force f , given by �8�, which pulls
the monomers into the coiled domain, is balanced by the
effective frictional force arising from dissipation:

̃v = f , �17�

where v=dl1 /dt=−dl2 /dt. The absorbing force of Eq. �8�,
arising from free-energy change, is essentially

f � � , �18�

where we neglect the contribution of the surface term, which
is sufficiently small at l1�a. The effective friction depends
on the dissipation mechanism, and therefore, in general, will
depend on the conformation of a chain. The above force-
balance relation is nothing but the energy balance in �1�, as
can be confirmed by multiplying both sides by dl1 /dt.

Let us consider the conformation shown in Fig. 1 just
after nucleation. The collapsed domain is pulled by the
coiled domain with force f , and vice versa. The system is
similar to the relaxation of stretched polymers �26,27� and

Rf

R┴

R┴

l1/a monomers

Rf

RL
r

Rf

l2/a monomers

l1/a monomers

(a)

(b)

Rf

l1/a monomers
l1/a monomers

FIG. 1. Schematic representations of a polymer in the folding
process at lp�a �a� and lp�a �b�. The polymer consists of col-
lapsed and coiled domains. The collapsed domain has l1 /a mono-
mers and the size Rf. The coiled domain has l2 /a monomers and the
lateral fluctuation R�.
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adsorption of polymers by pulling on the end with an exter-
nal force �28,29�. In the former systems, flexible �26� and
semiflexible �27� polymers are stretched when a force is ap-
plied at one or two ends. In the latter systems, a polymer is
pulled at a constant force and is absorbed into a pore. In both
systems, after the force is switched on, tension propagates
along the chain with finite velocity. Therefore, not all the
monomers are moved by the force; some parts are driven by
the force and others do not feel it. The results of these works
show that the effective friction depends on the length of the
monomers moving under the force, and their motion is initi-
ated by the propagation of the force.

In our system, the force is acting on the interface between
collapsed and coiled domains. While the force quickly
propagates over the entire collapsed domain due to the co-
operative motion of the monomers, the force acting on the
coil domain propagates with some velocity. The time re-
quired for propagation is not infinitesimal. The overall mo-
tion of a chain does not contribute to the effective friction,
but relative motion of a collapsed or coiled domain leads to
dissipation. Thus, the question arises: in the growth step,
which domain moves? This is equivalent to asking which
domain contributes to dissipation. Since in the free-drain
limit the friction is proportional to the length of a moving
domain, the collapsed domain moves quickly and makes a
dominant contribution, at least, at an early stage of the
growth step. At a later stage, when the length of a collapsed
domain becomes much longer than that of a coiled domain,
and, in addition, when the force propagates to the free end of
the coiled domain, the coiled domain makes the dominant
contribution to dissipation. Therefore, we assume that the
dominant contribution is from the collapsed domain at the
early stage. The effective frictional coefficient is described in
the free-drain limit as

̃ � 1 = �l1. �19�

In semiflexible polymers, the right-hand side is multiplied by
the logarithmic correction �ln�lp /a��−1. At a later stage after
force propagation, the effective friction is described as

̃ � 2 = ��L − l1� . �20�

Therefore, the velocity is

v � 	 1

1
+

1

2

 f =

�L

�l1�L − l1�
, �21�

where we neglect the logarithmic correction. Note that this
argument is justified even with the hydrodynamic interaction.
We will see this in Sec. VI.

IV. UNFOLDING TRANSITION

When, at t=0, the attractive interaction is switched off, a
collapsed polymer starts to unfold. While, in the folding tran-
sition, the kinetics is dominated by the competition between
the free energies that do and do not prefer the collapsed state,
in the unfolding transition all the terms in the free energy
cause a collapsed polymer to unfold. In fact, the free energies
of the entropic elasticity, the bending elasticity, and the ex-

cluded volume interaction are larger in the folded state. This
suggests that the collapsed state is unstable at an early stage
of the transition. After the swelling step, the structure is simi-
lar to a coiled state, but it has many entanglements, which
are expected to lead to slow kinetics. Finally, a polymer re-
laxes into an equilibrium coiled state. Therefore, we assume
that the unfolding process consists of three steps: swelling,
disentanglement, and relaxation �Fig. 2�.

In the unfolding transition, the free energy is described
with elastic and interaction terms,

F � T��2 + �−2� +
B

RL
3	 L

lp

2

, �22�

where �=RL / �Llp�1/2, and B� lpa2T�1−� /T� is the second
virial coefficient. � is the critical temperature of the transi-
tion. At t=0, we increase the temperature so that B� lpa2T
�0. In the entropic contribution, the first term shows the
energy penalty for expansion and the second term corre-
sponds to that for compression. Here we consider relaxation
to an equilibrium coiled state, i.e., the second term is domi-
nant. The volume interaction is dominant at the swelling step
and almost disappears after that step. In the disentanglement
and relaxation steps, we consider the free-energy change due
to the entropic contribution in Eq. �22�.

A. Swelling

In this step, the dominant contribution of interactions be-
tween monomers gives the free-energy change,

dF

dt
� 	−

BL2

RL
4lp

2
dRL

dt
. �23�

The dissipation arises from all the monomers and is de-
scribed as

dQS

dt
� �

L

lp

lp

ln�lp/a�	dRL

dt

2

. �24�

With Eq. �1�, the time evolution is given by

RL

Rswell
� 	1 +

BL
lp
2Rswell

5 t
1/5

, �25�

where Rswell is the size in the folded state.
Since monomer-monomer interaction is short ranged �the

length scale is �=O�a��, this regime is over when the mean
distance between monomers exceeds �. Therefore, the char-
acteristic time is

RL

(i) (ii) (iii)

Rg*

swelling disentanglement relaxation

FIG. 2. Three steps in the unfolding process: �i� swelling, �ii�
disentanglement, and �iii� relaxation. We characterize the time evo-
lution with the size RL.
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�swell �
L2/3lp

ln�lp/a�a5/3�0, �26�

where we use the microscopic time scale �0=�a3 /kBT. As
we will see later, this time scale ��L2/3� is much shorter than
the time scale of the other two regimes. We conclude that the
swelling regime does not exhibit dynamic scaling behaviors.

B. Disentanglement

In the steps of disentanglement and relaxation, the free-
energy change originates from the elastic free energy, which
is given by

dFela

dt
� −

T

�3

d�

dt
. �27�

For the conformation with entanglements, a topological blob,
which consist of g�lp monomers and is Rg� in size, can be
defined �see Fig. 3� �17�. Inside a topological blob, a chain
behaves like a Gaussian coil, whereas on a larger scale, a
chain is assumed to be a swollen globule. Therefore, Rg�

2

�g�lp
2 and g�lp /Rg�

3 �L /RL
3 is satisfied. This leads to the fol-

lowing relations:

g� �
RL

6

L2lp
4 , �28�

Rg� � 	 lpg�

L

1/3

RL. �29�

Beyond this scale, blobs are frozen due to entanglements and
behave as obstacles when monomers in a particular blob are
driven. Since we neglect the hydrodynamic interactions, the
dissipation inside a blob is proportional to the number of
segments, g�, and it is written in the free-drain limit as

dQS

dt
�

L2

lp
2g�

�g�
lp

ln�lp/a�
	dRg�

dt

2

� �
RL

4

lp
3 ln�lp/a�

	dRL

dt

2

.

�30�

From the energy balance, we obtain

RL

Rdis
� 	 t

�dis
+ 1
1/8

, �31�

�dis �
L5/3lp

4/3

a3 ln�lp/a�
�0, �32�

where Rdis�L1/3lp
2/3 is the initial value and �dis is the charac-

teristic time scale in this regime. We have assumed the swol-
len globular structure for the initial state. For t��dis, the
following scaling relation is obtained:

RL � t1/8. �33�

This step proceeds during g��L / lp, where a polymer has
many entanglements so that we assume the outside of the
blobs to be frozen. The characteristic time scale of this step
is obtained with the condition g�=L / lp and is proportional to
L3, which is much longer than the time scales of the other
two steps.

C. Relaxation

In contrast to the disentanglement step, in the relaxation
step, all segments contribute to dissipation, and thus it is
given as

dQS

dt
� �

L

lp

lp

ln�lp/a�	dRL

dt

2

. �34�

From Eqs. �27� and �34�, we obtain

RL

Rrelax
� 	 t

�relax
+ 1
1/4

, �35�

�relax �
L2lp

a3 ln�lp/a�
�0, �36�

where Rrelax��Llp�1/2 and �relax are the initial value and the
characteristic time scale, respectively, in the relaxation step.
We estimate Rrelax from the condition g�=L / lp. We should
note that the feature of �relax�L2 is typical in Rouse dynam-
ics �30�. For t��relax, the following scaling relation is ob-
tained:

RL � t1/4. �37�

V. SIMULATIONS

In order to examine the folding and unfolding kinetics, we
carried out Langevin dynamics simulations of a bead-spring
model using the following potentials:

Vbeads =
ka

2 �
i

�ri+1 − ri − a�2, �38�

Vbend =



2 �
i

�1 − cos �i� , �39�

Rg*

g* monomers

FIG. 3. Schematic representation of a topological blob of g�

monomers. Inside a blob, a polymer behaves as a coil, whereas it is
entangled on a larger scale.
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VLJ = 4�LJ�
i,j
�	 a

ri − r j

12

− 	 a

ri − r j

6� , �40�

where V=Vbeads+Vbend+VLJ, ri is the coordinate of the ith
monomer, and �i is the angle between adjacent bond vectors.
The monomer size a and kBT are chosen as the units of
length and energy, respectively. Monomer-monomer interac-
tions are included with the Lennard-Jones potential VLJ,
which contains the soft-core excluded volume interaction
and the short-ranged attractive interaction. With small �LJ,
the attraction is weak such that only the excluded volume
interaction is relevant. We set �LJ=0.3 for this good solvent
condition. On the other hand, with large �LJ, the attractive
interaction plays a role for the folding transition �poor sol-
vent condition�. We adopt the spring constant in Vbeads to be
ka=400. The persistence length lp is a convenient measure to
characterize the stiffness of a polymer chain. The bending
elasticity 
 in Vbend satisfies the relation 
= lpT. We consider
a homopolymer mainly with a polymerization index N
=256, which has sufficient length for the formation of or-
dered structures �a toroid, a cylinder, and so on� in a semi-
flexible polymer �2�.

The equation of motion is written as

m
d2ri

dt2 = − 
dri

dt
−

�V

�ri
+ �i, �41�

where m and  are the mass and friction constant of mono-
meric units, respectively. The unit time scale is �0

s

=a2 /kBT=6	�0. We set the time step as 0.01�0
s and use m

=1.0 and =1.0. With these parameters, the relaxation time
of the momentum of a monomer is sufficiently fast as com-
pared to the time scale of interest. Gaussian white noise �i
satisfies the following fluctuation-dissipation relation:

��i�t� · � j�t��� = 6kBT�ij��t − t�� . �42�

The folding and unfolding states of a polymer are character-
ized by the number of folded monomers Nfold, which is de-
fined by

�i = �
j

H�rc
2 − ri − r j2� , �43�

Nfold = �
i

���i − �c� , �44�

where H�x� and ��x� are the Heaviside and step functions,
respectively, and �i is the local monomer density. In this
work, we set rc=3.0 and �c=25.0. The nucleation time �c is
defined so as to satisfy Nfold����Nc for ���c, where we set
Nc=0.20. We should note that our results do not depend on
these specific values. Conformations of a polymer are char-
acterized by the long-axis length,

RL = maxri − r j . �45�

In the folding transition, coiled polymers were equilibrated
under the good solvent condition, �LJ=0.30, and then
quenched at t=0 into poor solvent conditions such as �LJ
=0.70, 1.0, and 1.3. Although we had various structures such
as a toroid and a rod for lp�10a, we chose toroidal confor-

mations, and the macroscopic variables were averaged over
an ensemble of this conformation for consistency with our
theory. To achieve this, we neglected the trajectories whose
final conformations have the long-axis length larger than 20a
in order to ensure that the final conformations are the troidal
state. Typically, cylindrical conformations have a size of
more than 20a in the folded state. In the unfolding transition,
we prepared folded polymers at �LJ=1.0, and quenched the
system at t=0 into �LJ=0.30. We calculated the fraction of
collapsed part and averaged it over more than 100 runs.

Figure 4 shows the typical time evolution of the ratio of
monomers in the folded state. As we can see, after a long lag
time, the ratio increases with time and reaches the equilib-
rium value. The dependence of the nucleation time on the
persistence length is shown in Fig. 5. For small lp, the nucle-
ation time exponentially depends on the persistence length,
which is consistent with Eq. �13�. For large lp, the slope
becomes rather gentle. This is also consistent with our theory
of Eq. �16�, where �c�exp�lp

1/2�.
The velocity of l1 after nucleation is plotted in Fig. 6,

where the velocity is inversely proportional to l1. This im-
plies that friction does not arise from the coil part. If the coil
domain involves friction, the velocity will increase with l1.
In Sec. III C, we discussed the velocity of the growth step,
which is valid in the early and later stages. At the early stage,
v�� / ��l1�, while at the later stage, v�� / ���L− l1��. Our
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FIG. 4. Typical time evolution of l1 in the folding transition. The
attractive interactions switch on at t=0 when �=0.3 is replaced with
�=1.0.
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FIG. 5. Semilogarithmic plot of nucleation time as a function of
persistence length.
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results of simulations are consistent with �21� at the early
stage. However, at the later stage, our theory predicts in-
crease of velocity. The discrepancy may be explained by
large fluctuations of the fraction of folded monomers. In fact,
the system reaches the folded state even at l1 /L�1 as shown
in Fig. 6�b�. Since the driving force for the folding transition
decreases close to the equilibrium state, the velocity near
l1 /L�1 is expected to decrease as in Fig. 6. In our theory,
we assume that the driving force is constant throughout the
growth step.

Let us now discuss the unfolding transition. First, we
show the result for a relatively long �N=2048� chain. Figure
7 shows that there indeed exists slow kinetics after the swell-
ing step. The slow kinetics is independent of the interaction
energy, while the swelling step is characterized by the inter-
action energy �Fig. 7�b��. The LJ potential contains a weak
attractive part even in the coiled state. Since the interaction is
short ranged, the energy is approximately 0 in the coiled
state. This is shown in Fig. 7�b�. The system is not in equi-
librium even at 108�0

s , which is much longer than the Rouse
time ��106–107�. On the other hand, an ideal polymer is
equilibrated much faster, as expected. Thus, it is evident that
slow kinetics exist in the unfolding transition, and this fact is
due to the noncrossing constraint of a chain with excluded
volume interaction. Note that the slow kinetics was also ob-
served in the simulations of flexible polymers in �10�. Since
computation with long chains is time consuming to obtain
statistics, we used N=256 chains and took the average over
100 runs. Figures 8 and 9 show the results of the unfolding
transition. The size and time are normalized with character-

istic space and time scales according to Eq. �32� for the early
stage and Eqs. �35� and �36�, respectively, for a later stage.
The initial size for the disentanglement step is determined
from the result of simulations. Since the swelling process for
N=256 chains is short ��103 steps�, the value of R1 corre-
sponds to RL after a jump at t�0 �Fig. 8�a��. The time evo-
lution of the long-axis length exhibits a universal feature in
which the plots do not qualitatively depend on the persis-
tence length and the depth of quench. In addition, the data
cover from t�� to t��, and thus our simulations have a
suitable time scale. In both figures, the slopes are in good
agreement with our theory.

VI. HYDRODYNAMICS

With the hydrodynamic interaction our previous theory is
modified in a way that depends on the kinetics. For expan-
sion and contraction of a domain, it is necessary to consider
the dissipation of Eq. �3�. For cooperative motion of mono-
mers, the modified Stokes dissipation due to hydrodynamic
back flow is applied. The Stokes drag does not act on each
segment, but acts on a sphere of �H in size, while hydrody-
namic interactions are screened beyond the screening length.
At a length scale smaller than �H, monomers move coopera-
tively with the hydrodynamic back flow. Thus, the dissipa-
tion is
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FIG. 6. �Color online� �a� Log-log plot of velocity during
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gray� and fluctuation �black� of the fraction of the folded state with
lp=12.
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FIG. 7. �Color online� Time evolution of a long chain �N
=2048� during the unfolding transition. �a� Time evolution shows
slow relaxation after initial expansion �the lower black line�. The
size is normalized with the equilibrium size RL

eq. Both axes are
shown with logarithmic scales. The kinetics of an ideal polymer is
also shown �the upper red �dark gray� line�. �b� Interaction between
monomers quickly decreases at an early stage of the transition. The
two solid lines show t1/4 and t1/8. The size at the equilibrium state is
estimated from the additional simulations at a fixed value of
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dQS

dt
� �v2�H. �46�

This feature is called a nondrain compared with the situation
of free drain where all monomers are under the Stokes drag
�31,32�.

A. Folding transition

The kinetics of the folding transition essentially does not
change in the nucleation process with hydrodynamic interac-

tion since dissipation modifies the prefactors of the nucle-
ation time in Eqs. �13� and �16�. On the other hand, in the
growth process, the friction of a chain is proportional to its
size. Therefore, the collapsed part has smaller friction, which
is proportional to l1

1/3, for example, for flexible polymers. The
friction is much smaller than that of the coiled domain; thus,
it supports the assumption that only the collapsed domain
contributes to the dissipation in the growth step. We obtain
the velocity as

v =
�

�a2/3
1

l1
1/3 �47�

for flexible polymers, and

v =
�

�
	 �a

Tlp

2/5 1

l1
1/5 �48�

for semiflexible polymers.

B. Unfolding transition

In the initial stage of the unfolding transition, the hydro-
dynamic interaction is approximately screened, while in the
disentanglement and relaxation regimes, the hydrodynamic
interaction is relevant to the kinetics of the transition. In the
disentanglement process, the hydrodynamic interaction is
screened outside blobs since the blobs are pinned due to
entanglement. The dissipation inside a blob is

dQH

dt
� 	 L

lpg�
2

�Rg	dRg

dt

2

�49�

=�
L3lp

3

RL
5 	dRL

dt

2

. �50�

We obtain

	 RL

Rdisentangle

−1

= 1 − t/�disentangle� , �51�

�disentangle� =
�L5/3lp

4/3

a3 �0. �52�

In the relaxation regime, hydrodynamic back flow dominates
the entire polymer. Thus, the dissipation is

dQH

dt
� �RL	dRL

dt

2

. �53�

By using Eqs. �1�, �27�, and �53�, we obtain

RL

Rrelax
� 	 t

�relax�
+ 1
1/5

, �54�

�relax� = ��Llp�3/2. �55�

Here, the characteristic time scale has the Zimm-type feature
�relax� �L3/2 �30�.

VII. KINETIC PATHWAY

In our theory, we assume that the kinetic pathway is
nucleation and growth for the folding process �Fig. 10�a��
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FIG. 8. �Color online� Time evolution of the long-axis length of
a polymer at an early stage for various persistence lengths. Bare
plot for lp=4 is shown in �a�. We determine the initial values for the
disentanglement process from R1 in the figure. �b� A log-log plot of
the time evolution. Both the long-axis length and time steps are
normalized with characteristic space and time scales �see Eqs. �33��.
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FIG. 9. �Color online� Log-log plot of time evolution of the
long-axis length of a polymer at a later stage for various persistence
lengths. Both the long-axis length and the time steps are normalized
with characteristic space and time scales according to Eq. �37� in
the text. The dashed and dotted lines show the equilibrium size for
lp=4 and 14, respectively.
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and gradual expansion for the unfolding process �Fig. 10�c��.
However, we may also assume the opposite pathway, i.e.,
gradual contraction for the folding process �Fig. 10�d�� and
nucleation and growth for the unfolding process �Fig. 10�c��.
Here, we discuss the reason that the latter pathway does not
appear. An important fact is that a faster process at the initial
stage of the transition is able to survive. We will calculate the
time evolution of the unrealistic pathways �Figs. 10�b� and
10�d�� and compare it with the results we obtained. For sim-
plicity, we will discuss kinetics without the hydrodynamic
interaction.

A. Folding transition

Here, we consider an early stage of the kinetics of Fig.
10�d�. In the process, the free-energy change is divided into
two terms: the elastic and the volume free energy. The
former prevents the folding transition, while the latter ini-
tiates the transition. The volume free energy is written as

Fint �
B

RL
3	 L

lp

2

. �56�

At t=0, we decrease the temperature so that B�0. The free-
energy change is calculated as

dF

dt
� 	−

BL2

RL
4lp

2 −
TLlp

RL
3 
dRL

dt
, �57�

where the second term is the contribution of the elastic free
energy. The first term contributes to a decrease in the free
energy, while the second makes an opposite contribution.
When RL is close to the equilibrium size in the swollen state
��Llp�1/2, the first term is proportional to �L0 and the sec-
ond term is proportional to �L−1/2. We are interested in the
kinetics of the early stage of this pathway. Thus, we neglect
the second term in �57�. The dissipation in this process is

dQS

dt
� �L	dRL

dt

2

, �58�

where we neglect the logarithmic factor for simplicity. With
Eq. �1�, the time evolution is

RL

R2
� 	1 −

BL
lp
2R2

5 t
1/5

. �59�

At the early stage, the time evolution is

RL � R2 −
BL
lp
2R2

4 t , �60�

where the velocity is proportional to L−1. Thus, we expect
this process to be too slow to proceed before the nucleation
process.

B. Unfolding transition

In the unfolding transition, we may assume the kinetic
pathway of Fig. 10�b�, that is, the collapsed polymer with a
short unfolded coiled part. The kinetics is driven by the free-
energy change of the unfolded part, which is in fact the dif-
ference of the free energy between the coiled and the col-
lapsed states:

dF

dt
� −

T

l2/3lp
1/3

dl

dt
. �61�

The dissipation from the coiled part is

dQ

dt
� �l	dl

dt

2

. �62�

Therefore, we obtain

l � 	 T3

�3lp

1/8

t3/8, �63�

which indicates that the characteristic time for this pathway
is proportional to L8/3. As in Sec. IV, the swelling regime
proceeds much faster. From this, we conclude that the path-
way is not realized.

VIII. SUMMARY AND REMARKS

In summary, we investigated the kinetics of the folding
and unfolding transitions in a single semiflexible polymer
with and without the hydrodynamic interaction. We found
that the velocity of the length of the collapsed domain de-
pends inversely on the length in the folding transition, and
the dynamic scaling exponents are 1/8 and 1/4 for the disen-
tanglement and relaxation steps, respectively, in the unfold-
ing transition without the hydrodynamic interaction. The
time dependence without the hydrodynamic interaction is
also calculated using Langevin dynamics simulations, and is
found to be in good agreement with our theory.

We discussed the origin of dissipation during the folding
and unfolding transitions. The main contribution in the fold-
ing transition is found to be the motion of the collapsed
domain along a chain. We proposed a slow relaxation regime
in the unfolding transition arising from entanglements of a
polymer. Since this regime is not found in an ideal polymer,
we consider that the slow kinetics originate from the topo-
logical constraint due to the excluded volume interaction.

Although the kinetics of single semiflexible polymers
have not been studied extensively in experiments, the authors
in Refs. �24,33� investigated the time evolution of long DNA
molecules by using fluorescence microscopy. In �33�, DNA
molecules were contracted using optical tweezers under good
solvent conditions. After switching the optical tweezers off,

(a)

(b)

(c)

(d)

FIG. 10. Kinetic pathways of the folding and unfolding transi-
tions. We assume �a� and �c� since the pathways �b� and �d� are
unrealistic, as shown in the text.
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the time evolution of the size of the DNA molecules was
observed, and a small exponent of 0.125 was found. This
result corresponds well with the disentanglement regime in
our results. In �24�, the transitions were induced by a sudden
change in the concentration of multivalent cations. In the
folding transition, those authors found a linear time depen-
dence of the apparent size of a DNA molecule. Since the data
have large fluctuations, quantitative comparison is difficult at
the moment. Nevertheless, we believe that further experi-
mental studies would be helpful for comparison between
theory and experiments.

To conclude this paper, we make some remarks for future
investigations.

�1� We have considered a single nucleation along a chain.
This is a limited situation because nucleation usually occurs
simultaneously all along a chain. However, as we discussed,
the nucleation time depends exponentially on the persistence
length. This indicates that we need a very long chain to ob-
tain multiple nucleations with a large persistence length. This
is in contrast to the case of flexible polymers where multiple
nucleations called a pearl-necklace structure dominate at an
early stage of the folding transition �15,16�. We should note
that, when we have a very long semiflexible chain, we
should consider a network structure rather than multiple
nucleations along a chain since nucleation does not occur
locally due to the bending rigidity.

�2� As noted in the Introduction, we have concentrated on
a toroidal structure. This makes the problem tractable. To
discuss further, we have to consider cylindrical conforma-
tions. They appear as the equilibrium state in a range of
parameters, but the difficulty is that they have many meta-
stable structures depending on the number of times they are
folded. Cylinders that are a few times folded are likely to
appear in the kinetics though they are not the equilibrium
structure but metastable states. After a certain time, they be-
come more folded structures or sometimes make a transition
into toroidal structures. The kinetics of folding into cylindri-
cal conformations are dominated by such hopping steps,
which are different from the kinetics for toroidal conforma-

tions. It would be interesting, as a further study, to discuss
the bifurcation between the two kinetics, the nucleation and
growth, which are discussed in the present work, and the
hopping steps found in kinetics of cylindrical collapses.

�3� Our calculation of the nucleation time is qualitative. In
order to make quantitative discussions, it is necessary to take
loop formation into account. In fact, the nucleation process
initiates with loop formation �34�. This modifies the prefac-
tors in the nucleation time, Eqs. �13� and �16�. Nevertheless,
the nucleation time is dominated by the exponential factor.
Therefore, we expect our results to be qualitatively reason-
able.

�4� Our comparison between theory and simulation is un-
der the condition without the hydrodynamic interaction. Re-
cently, several algorithms have become available to deal with
the hydrodynamic interaction in polymer systems. For ex-
ample, stochastic rotation dynamics �13,14� and lattice Bolt-
zmann simulations �35� were implemented for investigating
the kinetics of polymers. Such simulations would reveal de-
tails of the physical processes involved in the kinetics of the
folding and unfolding transitions when the hydrodynamic in-
teraction is also considered, and would test the validity of
our theory.

�5� Quantitative arguments for the disentanglement pro-
cess are still left as a future study. In particular, the crossover
between disentangled and swollen states is not clear. We
should note that the characteristic time in this study is over-
estimated. In fact, the disentanglement process does not end
at g��L / lp, but is replaced earlier by the relaxation process,
since topological blobs suddenly disappear when they be-
come sufficiently large. Our theory does not include such
effects.
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